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Abstract: There is a great interest in secure communications within industry and 
various sectors of society. One common approach of achieving this is by encoding the 
information using shift-keying methods such as Binary Phase Shift Keying and 
Quadrature Phase Shift Keying. Proposed in this paper is a new robust yet simple 
multilevel differential chaotic shift-keying scheme. Compared with the schemes currently 
in use it has advantages of good noise rejection and increased data transmission rates.  
Under this scheme, instead of using one or two-dimensional encoding, an extendable  
dimensional coding method is used and its effectiveness is demonstrated by presenting 
simulation results for a four-dimensional system. The potential of implementing this 
scheme in real-time applications is under investigation. 
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1. INTRODUCTION 
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Over recent years a great deal of research has 
focused on chaotic communication schemes. The 
primary driver for this interest is that chaos based 
schemes are inherently highly secure and have good 
spectral efficiencies which give good noise rejection. 
There are two basic types of method utilizing these 
chaotic signals. The first methods rely on ideas first 
introduced by Pecora and Carroll (Pecora et al., 
1990, 1991) and employed by (Cuomo et al., 1993), 
which choose a particular state of a chaotic system to 
transmit. In turn this is used in the receiver to 
synchronize a similar chaotic circuit and allow 
regeneration of the complete set of chaotic states 
needed for decoding the incoming message 
sequences. These methods, although attractive, have 
not proved to be sufficiently robust with noisy 
transmission channels (Kolumbán et al., 1998). The 
second types of method are characterized by the 
transmission of a reference signal. The most 
successful has been Differential Chaos Shift Keying 
(DCSK) which introduced chaotic processes into 
existing correlation based schemes. This method 
transmits a chaotic function for half of the symbol 
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interval and then a duplicate or inverted version of the 
same signal in the second half representing a ‘1’ or ‘0’. 
This is exactly analogous to a BPSK scheme and 
decoding is achieved by correlation of both halves of the 
signal. As with BPSK there are extensions that include 
QPSK, M-ary constellations and QAM. A method 
directly analogous to QPSK was introduced by Galias 
and Maggio (Galias, et al., 2001) known as Quadrature 
Chaotic Shift keying (QCSK) outlined in section 2. 
Further work on DCSK by Salberg and Hanssen (Salberg 
A. et al., 2006) characterizes a chaotic signal within an 
orthonormal subspaces and utilizes this to choose the 
transmitted signal. 
 
The QCSK method and its obvious extensions rely on 
complex two-dimensional orthogonality of the sine and 
cosine functions. This paper the introduces the idea of 
extending the dimensionality of encoding to an m  
dimensional space and deriving m orthogonal functions 
as the range space of a series of vectors in  space 
mapped from times samples of the chaotic signal. 
The result is a robust yet simple communication scheme. 
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In section 3. the method of orthogonal chaos shift keying 
is outlined and some simulation results and conclusions 
are presented in sections 4. and 5. respectively. 
 

2.  QUADRATURE CHAOTIC SHIFT KEYING 
 
This is a derivation of the well-known Quadrature Phase 
Shift Keying (QPSK), which itself is related to the Binary 



Phase Shift Keying (BPSK). In both of these 
methods the underlying carrier signal is sinusoidal. 
For the BPSK technique a portion of the sinusoid 
signal is transmitted to represent a ‘0’ and its anti-
phase counterpart is transmitted to represent a ‘1’. 
QPSK requires two orthogonal signals, which are 
added together in a combination of four ways to 

     

give a four state transmitted signal. In the receiver 
the signal parameters are determined by correlating 
them with each of the orthogonal signals and hence 
the exact meaning of the received signal can be 
deciphered. The signals used in this technique are 
sinusoidal and the orthogonal counterparts are 
therefore cosine functions. 
 
In Quadrature Chaotic Shift Keying the sinusoidal 
signal is replaced by a chaotic reference signal, 
generated over a fixed time interval, by a chaotic 
system. A signal that is orthogonal to this is then 
generated and these signals are used in a similar way 
to the QPSK set of orthogonal signals. There are two 
principal advantages to using chaotic signals. The 
first is that it allows messages to be transmitted in a 
secure or covert way where a potential intruder could 
easily reject the transmitted signals as noise. 
Secondly, the signal now has spread spectrum 
characteristics that improve the noise rejection 
properties. 
 
Consider a signal , which is generated 
by a chaotic process and is modified so that is has 
zero mean; that is 
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then a Fourier expansion of this signal can be 
expressed as 
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Define the average power of this signal as 
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which because of the following properties of 
sinusoidal functions  
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Now to derive a signal that is orthogonal to  by 
applying a Hilbert Transform to the signal with a phase 
shift of

)(tx

2/π . This can be achieved by taking a Fourier 
Transform of the signal and rotating the positive 
frequencies by 2/π and the negative ones by 2/π−  and 
finally inverting the transform to give 
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then 
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it follows then that 
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Consider now two possible maximally separated 
constellations of signals that consist of an addition of a 
proportion of each orthogonal signal. These can be 
represented on an Argand diagram 
 

(a)

 

(b)  
 
Fig. 1. Maximal Separation Quadrature Constellations 

existing on a two dimensional hypersphere: (a) 
symbol encoding contains the reference signal 
whereas (b) encodes all symbols. 

 
 Symbol 0 1 2 3 

1 0 -1 0 (a) c  
0 1 0 -1 

2/1  2/1−  2/1−  2/1  
(b) c  

2/1  2/1  2/1−  2/1−  
 
Table 1. Maximal separation quadrature constellation 

encoding symbol maps 
   
Each symbol can be represented as 
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Orthogonality is assured in the complex plane and its 
analogy can therefore be represented along the real 
time axis if the two complimentary signals are 
orthogonal; that is 
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this is the message signal for each symbol in the 
message.  

     

 
At the receiver the symbols can be retrieved by 
determining the coefficients of each individual 
orthogonal component by using the two correlation 
integrals 
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3. ORTHOGONAL CHAOS SHIFT KEYING 
 
3.1 Introduction  
 
The Quadrature Chaos Shift Keying method can 
clearly be developed into an M-ary type constellation 
method that allows the transmission of more symbols 
improving the symbol cycle efficiency. A 
disadvantage of this method is that all points on the 
constellation lie on a fixed radius circle that is 
normally represented on the complex plane. Large 
numbers of symbols require an equally large number 
of points on the fixed circle which becomes crowded 
and hence gives rise to potential misinterpretation on 
decoding. One way to avoid this is to also vary the 
amplitude of the symbol representations as well as 
the phase (QAM). This form of variation of circle 
radius is not desirable, as this would make the signals 
more easily detectable. Presented is a method of 
overcoming this problem by the use of a system of 
orthogonal sequences derived by the method of 
singular value decomposition.  
 
 

3.1 Theoretical Analysis 
 
Consider an dimensional space. Any point can be 
represented by an dimensional vector that is a linear 
sum of the set of orthonormal basis vectors. 
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Now consider a subset of size  of these basis vectors 
that describe an dimensional subspace within the 

dimensional space. Further consider the set of vectors 
describing some hypersurface within this m dimensional 
subspace. 
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The selected subspace vectors can now be mapped onto 
the real time axis so that each basis vector represents a set 
of discrete time values of a real 
function )(tui ∀ ],1[ mi ∈ . Orthogonal encoding of our 
message can now be represented as 
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which in vector notation becomes 
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this is the message signal for each symbol in our 
message.  
 
At the receiver the symbols can be retrieved by 
determining the coefficients of individual orthogonal 
components by using the  correlation integrals m
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or from (18) (19) (20) 
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This will work with any set of signals if they are 
independent. If the signal sets are orthogonal then the 
matrix being inverted becomes diagonal and the 
noise rejection is greatly improved. 

     

]

 
3.2 Orthogonal Signal Generation 
 
The generation of a set of orthogonal signal sets is 
required. Consider a chaotic signal sampled at 
regular intervals and the values placed into a series 
of vectors  of length and arrange 
these vectors into an  matrix . Now consider 
the singular value decomposition of this matrix. 
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The matrix is symmetric and the chaotic 
process is sufficiently varying so that the columns of 

are independent; then the eigenvalues are all real 
and positive. This implies that if V is the matrix of 
eigenvectors of  then it is orthonormal. W is a 
diagonal matrix of the square roots of the 
eigenvalues of and is an orthonormal set of 
vectors describing the range space of calculated as 
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iλ are the eigenvalues of . XXT

 
The algorithms available for finding the eigenvalues 
and vectors of matrices are well understood and 
robust so the generated signals sets are easily 
generated. The U matrix can be split into a set of 
vectors , which can be seen as samples 
of a set of continuous signals with zero mean over 
the interval  and average powers of 1/ . 
These can now be encoded according to an encoding 
scheme, power balanced and transmitted. 
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3.3 Encoding Scheme 
 
Consider the signal matrix ; produced by 
taking samples of the chaotic process and the 

 orthonormal matrix U generated from it. 

nxm X
nxm

nxm
A transmittable signal sequence is generated from 
the columns of by using an encoding vector for 
each symbol to be represented. The transmitted 
sequence for the symbol is therefore only n  long 
whereas the transmitted reference is times longer. 
A simple ‘symmetric’ solution is to transmit 

symbols with m encoded sequences for each 
reference sequence. Each encoded sequence can 
represent states or symbols with each 
transmission set of reference and encoded sequences 

it is possible to transmit a possible different 
symbols by shifting in a bit register bits left for each of 
the sequences as shown in fig. 2. 
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Fig. 2. Shift register of  bits for each of the m  

sequences. 
m

 
3.4 Encoding Parameter Inversion 
 
When the reference signal is received a matrix is 
formed which produces a set of orthonormal sequences 

which, if uncorrupted by noise, should be exactly the 
same as the one produced in the transmitter. A problem 
arises however in the production of the eigenvector 
matrix which, while being orthonormal and being 
derived from , is not unique. The eigenvalues of 

are unique but can generate eigenvectors that can be 
inverted. This would manifest itself by effectively 
inverting one of the parameters in encoding vectors for 
each of the  sequences. If the symbol map is fully 
defined and symmetric then these inverted encoding 
parameters are undetectable since the vector with certain 
parameters inverted has a complement that is a valid 
encoding vector for a different symbol. 
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3.5 Non-Complementary Encoding 
 
In fig. 1. of section 2. the encoding vectors can be 
derived from the diagrams and consist of either 1± ’s and 
0’s or ±1/ 2 ’s, each scheme has a complement on 
inversion representing another symbol in the symbol 
map. These two schemes are fully defined symmetric 
maps for two dimensions with maximal separation of 
encoding parameters on a spherical hypersurface of order 
two and are therefore complementary. As described in 
section 3.4 this complementary characteristic has a fatal 
flaw for encoding symbols. This can be overcome by 
employing a non symmetric and hence a non-
complementary symbol map. This consists of a map 
where the positive values of the encoding vectors are not 
the same as the negative ones, which makes each symbol 
encoding vector unique. If the hypersurface for a 
complementary symbol map in  dimensions is defined 
as points on the hypersphere then this surface can be 
made non complementary by not centring it about the 
origin. If the centre of the hypersphere is moved 
by

m

m3/1−  in all dimensions a two to one complement 
is formed.  
fig 3. and table 2. shows a non-complementary symbol 
map for =2 with the origin shifted but the radius of 
unity is retained. 
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So (33) can be rearranged as 
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Fig. 3. Maximal Separation Quadrature 

Constellations existing on an offset two-
dimensional hypersphere with all signals 
encoded. 

 
If all sequences are considered then this equation 
becomes 
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 Symbol 0 1 2 3 
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Now if the received orthonormal U matrix is not power 
balanced then the matrix inversion is may not necessary 
but if power balancing is applied it should be 
approximately diagonal. 

 
Table 2. Maximal Separation Quadrature 

Constellation Encoding 
 

 3.6 Decoding Method 
Further to this if one of the parameters is inverted due to 
an inversion in one of the eigenvectors then this 
manifests itself as a row of C being inverted. If the full 
symbol map were considered this row would correspond 
to one of the map’s columns or its inversion; because the 
symbol in not complementary it is easy to determine if 

contains any inverted map values by choosing the 
minimum errors between each of the columns of 

and . Selecting these values and replacing them 
with the map values results in the best estimate of 

being obtained. 
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TĈ
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The equivalent of the correlation integral in equation 
(24) is a least squares approximation of the encoding 
vector given a noisy received signal matrix X . If the 
received signal of the column is considered then thi
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where  is Gaussian White noise so iε { } 0ε =iE  with 

variance and  is a diagonal power balance 
matrix. In the following equations the

2σ P
notation 

indicates a variable derived from received signal data 
and the ^ indicates an estimated value. 

 
4. SIMULATION 

  
4.1 Simulation Let 

  
A set of simulation results of the proposed scheme, with 
Gaussian White noise added in the communication 
channel, is presented in this section. The system diagram 
is shown in fig 4. The chaotic system used here is a form 
of the Lorenz system with the first state used as the signal 
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Now minimize iε  with respect to the estimate of the 
encoding vector  ˆ c i  
 where r = 28, σ = 10 and β = 8 / 3. α  can be chosen to 

suit the sampling time of the system. T
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Fig. 4. Simulation Schematic Diagram 
 
The signal sequences and the resultant orthonormal 
sequences are show in fig 5. (a)(b) and the received 
signals and reconstructed orthonormal sequences with 
the channel noise are show in fig 5. (c)(d). The effect of 
the eigenvector inversion is seen in fig 5. (d) and 
illustrates why the decoding technique has to consider 
potentially inverted encoding parameters. Finally fig 6. 
(a) shows a random message sequence, which has been 
transmitted over the channel, and the resultant received 
message is shown in fig 6. (b). The received message is 
delayed by sample times that corresponds to the 
number of samples required to fill the signal matrix  
before encoding can begin. The simulation results do not 
take into account any time shift correlation that may 
prove necessary on a real communication channel. 
However it is reasonable to assume that this shift would 
be taken care of in the communication preamble before 
data communication begins. 
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(c) (d)  
 
Fig. 5. (a) Transmitter zero mean chaotic reference 
sequences for , (b) Resultant orthonormal 
sequences . (c) Received reference sequences, (d) 
Resultant receiver generated orthonormal sequences 
showing inversion on some signals. 
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(a) (b)  
 

     

Fig 6. (a) Transmitted message and (b) Received 
message delayed by sample intervals. nxm

5. CONCLUSIONS 
 

In this paper we propose a new form of multilevel 
chaotic communication scheme based on the DCSK 
schemes and a method of deriving orthogonal signals 
using the singular valued decomposition of vectors of 
signals in  space. The advantages over QCSK are that 
the encoding and decoding are considerably simpler and 
extendible to  dimensional spaces giving encoding 
values at maximal distances in the  space that 
improves noise rejection and increases data transmission 
rates.  
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